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Cosmological models for Bianchi type III and Kantowski-Sachs space-times 
within the framework of Lyra geometry are obtained. The physical behavior of 
the models is also discussed. 

1. INTRODUCTION 

Lyra (1951) suggested a modification of Riemannian geometry by 
introducing a gauge function which is a metrical concept in Weyl (1918) 
geometry in the geometrical structureless manifold. Subsequent investiga- 
tions were done by Sen (1957, 1960), Halford (1970), Sen and Dunn (1971), 
Bhamra (1974), Beesham (1986), and Soleng (1987) in scalar-tensor theory 
and cosmology within the framework of Lyra geometry. Singh and Singh 
(1991a, b) considered Bianchi type I, V, and VIo cosmological models in 
the Lyra geometry. 

Several authors (Stewart and Ellis, 1968; Cohen and Defrise, 1968; 
Vajk and Eltgroth, 1970; Moussiaux et al., 1981; Lorenz, 1982, 1983) have 
studied Bianchi type III cosmological models. Weber (1984, 1985) has done 
a qualitative study of Kantowski-Sachs cosmological models. Lorenz (1983), 
Gr in  (1986), and Matravers (1988) have also studied cosmological models 
for Kantowski-Sachs space-time. 

In this paper Bianchi type III and Kantowski-Sachs cosmological 
models are investigated in Lyra geometry. 

2. FIELD EQUATIONS 

The field equations in normal gauge for Lyra's manifold as obtained 
by Sen (1957) are 

1 3 3 R ~  - ~g,~R + ~qS,~b~ -zg ,~qb ,~  = - x  T ~  (2.1) 
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where ~b~ is a displacement field defined as 

~b~ = (0, 0, 0,/3) (2.2) 

and T~v is the e n e r g y - m o m e n t u m  tensor given by 

T.,, = (p  + p ) u . u .  -pg~,~ (2.3) 

Perfect fluid matter is characterized by the equation of  state 

p = ( A - 1 ) p ,  1--<A--2 (2.4) 

We are considering only nonprivileged models, i.e., an observer has comov- 
ing velocity u ~" = 8f .  We take the metric in the form 

ds 2 = dt 2 - R E dx 2 - R2[ dO2 + f 2 (  O) d(~ 2] (2.5) 

where 

Singh and Singh 

R = R~(t)  and RE = R2(t) 

The field equation (2.1) reduces to 

2J~2 F (]~2~ 2 1 d2 f  3fl2 (2.6) 
R2 \R22] R2 f dO 2 -  XP--~  

]~1_~ ]~2 + ]~IR2 3 2 
R1 R2 R I R 2 = - X P - 4  fl (2.7) 

(/~2~ 2t 2/~/~2 1 d E f  3 
-'~2] R1R2 f R  2 d--~-- XP +4/32 (2.8) 

The energy conservation equation is 

3 �9 [" . 3 2 ] / / ~ ,  2R2'~ 
(2.9) 

Here the quantities with dots refer to their derivatives with respect to 
coordinate t. 

3. BIANCHI TYPE III SPACE-TIME 

3.1. # =/3(0 

The Bianchi type III metric is defined by 

ds 2 = dt 2 - R 2 dx 2 - R2( dO 2 + sinh 2 0 dt~ 2) (3.1) 
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which can be obtained from (2.5) when f ( 0 ) = s i n h  0. The set of  field 
equations (2.6)-(2.9) reduce to 

2/~2+ (/~2~ ~ 1 3 f12 (3.2) 

/~1+/~2+/~1/~2 3/3 2 
R1 R2 RIR2=-XP-4 (3.3) 

R2/ RIR2 R~=XP+4 - (3.4) 

3 �9 F . 3 2 -I [/~1 21~2~ 

By a combination of equations (3.2)-(3.4), we get 

2RlJR2 X 
k ~ # _ _  ( p - p )  (3.6) 
R1 R1R2 2 

Adding equations (3.3) and (3.4), we obtain 

R11_R'2+(R2~263RIR2 1 
R1 R2 \R22,] RIR2 R2=X(p-p) (3.7) 

It is difficult to solve these equations in the present form. We therefore 
introduce new variables 7/ and h as 

dt = R 2 d r  I (3.8) 

h = RIR 2 (3.9) 

Considering the equation of  state (2.4) and equations (3.8) and (3.9), we 
can write equations (3.4)-(3.7) as 

-~z ]  -t RIR2 1 = 4 

2 h' R; 
Xp'+~flfl'+(Xap+~fl )(---ff+--~z)=O (3.11) 

R~'-(R~'I]2+h'R~=~(2-A)pR~ (3.12) 
R1 \R l /  hRl 

h" 
- - -  1 =X(2-A)pR~ (3.13) 
h 

Here primes denote differentiation with respect to r/. Further, it is difficult 
to find a general solution of the set of  field equations (3.10)-(3.13). Hence 
we consider some particular cases of  physical interest. 
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Case I. Empty Universe 
First we consider matter-free space-time (p = p  =0) .  Then equations 

(3.10)-(3.13) become 

(R'2~242R~R2 2 2 3 
R2/ RIR2 1=~/7  R2 (3.14) 

fl '+(h'+R~ = 0  (3.15) 
fl k h R2] 

R~'_(R[~ 2+h'R~ = 0  (3.16) 
el \R1] hR1 

h"-h = 0  (3.17) 

Equation (3.17) gives the general solution 

h = ml sinh(~ + m2) (3.18) 

With the help of equation (3.18), we obtain from equation (3.16) 

r ./n+m~\]"~ R, : m 4 L t a n n t ~  ) (3.19) 

Substituting the values of h and R 1 from equations (3.18) and (3.19) in 
equation (3.9), we get 

R2= m~ sinh( 71+ m2)[ coth( ~+2m2) (3.20) 

Using equations (3.18) and (3.20) in equation (3.15) and then integrat- 
ing, we get 

/7 = ms[cosech(~ + m2)] 2 tanh (3.21) 

Here m~-, i = 1, 2 , . . . ,  5, are arbitrary constants related by 
2 2 3mlm5 + 4 ( m ~ -  1)m~ = 0 (3.22) 

Physical Behavior of the Model. Equation (3.21) can be written as 

m5 r . . , ' , ,  + m2"~ l "~-2 r . / n  + mA 1 -<''3+~ /7 =--7- Ls,nnt ---7-. j  ] Lcosnt--~--]] (3.23) 

which suggests that when ~7" -m2:  

(i) / 3 - 0  if m3>2.  
(ii) 13 - m5/4 if m 3 = 2. 

(iii) /7 " co if m 3 < 2. 
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The Ricci scalar is 

3 2[.-(n+m2\q2<m3-e>[ -{n+m=\] -2<m3+e> 
R =  --~ msLs,nnk----C-- ) J L c o s n k ~ 7  j (3.24) 

We define the expansion scalar O and shear scalar o- (Raychaudhuri,  1955) 
as 

3f" 
0 = - -  where V 3 -- (--gllgeeg33) 1/2 

V '  

O R2 \ R t  R2 / 

rl + m 2 4 

= 4--~1 [2 cosh(r/+ m2) - m3] [ s e c h ( - - - - ~ )  ] 

r. .{,7+mA] "~-~ 
x L t a n n ~ - - - - ~ j  j (3.25) 

, [(g,, gl,l  l 
cr 7 m 2 8 7/+ m2 2m3--4 

= 6m----~ [ sech (-~-m--~) ] [ tanh(--~---) ] 
• [2m3 -- cosh07 + m)] 2 (3.26) 

The cosmological parameters H (Hubble's parameter) and q (deceler- 
ation parameter) are 

~, 1 + 
H = V  3Re\R1 R e /  

H = ~ [2 cosh(n + m2) - m3] sech ~ 

x [ t a n h ( - ~ - ~ )  ] %-2 (3.27) 

v9  q = - - ~ -  

q = 2 - 6[sinh(~/+ m2)]212 cosh(r/+ mz) - m3] -2 (3.28) 

Case II. Matter-Filled Universe 

For a matter-filled universe we have not been able to find solutions in 
the case of dust- and radiation-dominated universe. However, the solution 
for a superdense universe (i.e., p = p) can be obtained. 
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Taking p = p, viz. ~, -- 2, we have found that the solutions are the same 
as those for an empty universe, but equation (3.11) gives 

= 3 2+m 
P=P--2---X/3 X [c0sech(r/+ m 2 ) ] 4 [ t a n ( ~ - - ~ ) ]  2% (3.29i 

where m is another arbitrary constant related to the others through 

mm2 + 2 2 (m3-1)m4 = 0 (3.30) 

Equation (3.29) suggests that pressure and density depend on the time 
function ~7 as well as the gauge function/3. 

Physical Behavior of the Model. In the case of a Zeldovich fluid the 
Ricci scalar becomes 

m F..(,7 + .1,7 + 
R = - 7  Ls,nnt,---7--)_ I Lcosnt,--T--)] 

It is clear that when r /+  -m2:  

(i) R ~ 0  if m3>2. 
(ii) R ~  -m/8,  if m3=2. 

(iii) R ~ - m  if m 3 < 2. 

The relative anisotropy is given by 

o .2 8m 2 2m3-cosh(7/+ mE) 

p 3m~ m --24/32[sinh �89 m2)]2(2-=3)[cosh 1 ](r/+ m2)] 2(2+m~) 

(3.31) 

(3.32) 

When ~ + - m2: 

(i) crE/p+O if m3>2. 
(ii) crEocp if m3-<2. 

3.2. fl =eons t  

Case I. Empty Universe 

Considering the displacement vector/3 as a constant in the case of an 
empty universe, we find that equations (3.5) and (3.6) reduce to 

/~t -I- 2R2 = 0 (3.33) 
R1 R2 

/~1 2R1R2 
+ - - = 0  (3.34) 

R1 R1R2 

Using equation (3.33), from equation (3.34) we obtain the solution as 

R 1 = exp(at + b) (3.35) 

where a and b are arbitrary constants. 
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From equations (3.33) and (3.35) we have 

{ at+b'~ 
R2 = C e x p ~ - - - - ~ )  (3.36) 

With the help of  equations (3.35) and (3.36), equation (3.3) gives a relation 
between constants a and fl, 

a 2 = _/32 (3.37) 

For a to be real,/3 must be imaginary. 
The solution in metric form can be written as 

ds ~ = dt 2 -  exp[2(at  + b)] dx 2 -  e x p [ - ( a t  + b)](d02+ sinh20 dtb 2) (3.38) 

Physical Behavior  o f  the Model.  The Ricci scalar R is 

R = 3a 2 -  2 exp(at  + b) (3.39) 

When (i) t + - b / a ,  R + 3 a 2 - 2 ,  and (ii) t+oo,  R + - m .  
The expansion and shear scalars are 

19 = 0 (3.40) 

o-2 =3a2 (3.41) 

Hence in this model there is no expansion. 

Case 1L Matter-Fil led Universe 

In this case also we have only found the solution for a Zeldovich fluid. 
The solutions are the same as in case II of the matter-filled universe in 
Section 3.1. 

4. KANTOWSKI-SACHS SPACE-TIME 

4.L f l  = f l ( t )  

The Kantowski-Sachs metric takes the form 

ds 2 = dt 2 - R 2 dr 2 - RE(d02+ sin 2 0 &b) (4.1) 

which can be obtained from the general form of  the metric (2.5) when 
f ( O )  =sin  0. 



1 4 4 0  Singh and Singh 

The corresponding field equations (2.6)-(2.9) for the metric (4.1) 

R2 \-~2] 4- R--~2 = -XP - ~ fl (4.2) 

f~l F.I~E+R1R2=_Xp_3fl2 (4.3) 
R1 R2 R1R2 

(2R,+/~,~ R2 1 3 z 
R1 R2]--~2+--~=XP+4 fl (4.4) 

3 . [ . 3 :l/R, 2R2\ 
(4.5) 

Adding equation (4.4) to twice equation (4.3), then subtracting equation 
(4.2), we obtain 

R, ~ 2 /~ /~  X(p_p)  (4.6) 
RI R1R2 2 

From equations (4.3) and (4.4), we get 

R1 R2 k Ra R2] R2 R 2=X(p-p) (4.7) 

Using the transformations (3.8) and (3.9) and equation of state (2.4), we 
can write equations (4.4)-(4.7) as 

(2R~+R~R'2+I = Xp + f12 R~ (4.8) 
\ R1 R2] R2 

, 3 f l f l , + [ X ( p  . n . h ,  R ' \  XP +~ (4.9) 

t 2 t t 

R~'_(R~ +h Rl=2 (2_h) o (4.10) 
R1 \R1] hR1 

h" 
- - + 1  = X ( 2 - h ) p  (4.11) 
h 

In the present form the field equations are difficult to solve. We therefore 
consider some cases of physical interest. 

reduce to 
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Case L Empty Universe ( p = p = O) 

In this case the set of field equations (4.8)-(4.11) reduce to 

( 2 R ~ + R ~  R~+I  3 
R1 g2] R2 =2/32R~_2 (4.12) 

~-~'+ h '+  R2 = 0 (4.13) 
/3 h R2 

R~' ( R ~ 2  h'R' 
R1 \R--71] + - ~ T  =0  (4.14) 

h"+h - 0  (4.15) 

Equation (4.15) yields the solution 

h = C~ sin(~7 + C2) (4.16) 

Using equation (4.16), we get from (4.14) 

R1 = t a n  (4.17) 

According to assumption 

h 
R a -  R1 

Hence 

R2 = ~ sin(~ + C2) cot (4.18) 

With the help of equations (4.16) and (4.18) we get from equation (4.13) 

fl = C,[ cosec( n + C2) ]2[ tan( ~ ) ] c3 (4.19) 

Hence Ci, i = 1, 2 , . . . ,  5, are arbitrary constants. Equation (4.12) is satisfied 
only when 

2 2 2 3C1C5+4(C3- 1)C42 = 0 (4.20) 

Physical Behavior of the Model. Equation (4.19) can be written as 

c5 r . / , 7 + c 2 ~  - 1 -~C,+2~ /3 =-~-[sm~,~] ] c3 2[cos(-~). (4.21) 

which shows that when 7 / + -  C2: 

(i) /3~0 if C3>2. 
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(ii) /3 ~ C5/4 if (?3 = 2. 
(iii) /3 ~ oo if Ca < 2. 

The Ricci scalar is 

R =  3C52F" {T~~c2~]2(c3-2)r {T~Jt-C2~]-2(c3+2) 
- 3---~- Ls,nl,---S-) j LCOSk---i-) j (4.22) 

When ~7 ~ - C 2 :  

(i) R-~0  if (73>2. 
(ii) R - - 3 C 2 / 3 2  if C3=2.  

(iii) R ~ -co  if Ca < 2. 

The scalars of expansion and shear are given by 

o =-~1112 cos(,0 + c2)-  c31 sec 

x [ t a n ( ~ - - Z )  ] c3-2 (4.23) 

~2 C4 

The Hubble parameter H and deceleration parameter q are 

H = l - ~ l  [2 cos(• + C2) -  C3] sec 

x [ t a n ( ~ - ~ - 2 )  ] c3-2 (4.25) 

q = 2 + 6[sin(r 1 + C2)]212 cos(~ + (?2) - Ca] 2 (4.26) 

Singh and Singh 

Case II. Matter-Filled Universe 

In this case we have not been able to find solutions for a dust- and 
radiation-dominated universe. However,  for a superdense universe the sol- 
ution can be obtained. 

Considering p = p, viz. h = 2, we have found that the solutions are the 
same as the solutions of  case I, but equation (4.9) leads to 

3 CC~ (4.27) 
P = -~XX f12+ xC4[sin(*/+ C2)]4[ c0t �89 C2)] 2c3 
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Here C is an arbitrary constant related to other constants through 

C + (C 2 - 1) C2C4 = 0 (4.28) 

From equation (4.27) it is clear that pressure and density both depend on 
the time function ~? as well as the gauge function/3. 

Physical Behavior of the Model. The Ricci scalar is 

c<r  ,',,+c;,1 R = ---&T [slnt,---~---] j [ c o s ~ , ~ ] j  (4.29) 

It is clear that when ~7 -> -C2 :  

(i) R->0 if C3>2.  
(ii) R->-CCJC~ if C3=2.  

(iii) R -> oo if C3 < 2. 

The relative anisotropy is given by 

o -2 8 xC~C][2C3-cos(~+ C2)] 
p 3 CC4- 24C~f12[sin �89 + C2)]2(2-c3)[ cos �89 + C2)] 2C2+%) (4.30) 

When ~7 --> - C2 : 

(i) o'2/p-+O if C3>2.  
(ii) r if C3-<2. 

4.2. fl =coast  

Empty Universe 

Taking /3 as a constant in an empty universe (p = p  = 0), the set of  
field equations (4.4)-(4.7) reduce to 

( 2/~ ,+R2~/~2+ 1_ 3/32 (4.31) 
R1 R2] R2 R~=4 

/~---~l -I- 2-/~2 = 0 (4.32) 
Rz R2 

/~l q-- 2/~1/~2 = 0 (4.33) 
RI RIR2 

RI _.}_ ~1~2 ..~ ~1~2 (3/~1 +/~2'~ + R ~ =  0 (4.34) 
R--7 R-; R--;C<( 

From equations (4.31) and (4.34), we get 

R, RE R,R2=-4/3 
(4.35) 
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Using equation (4.32) in equation (4.33) and then integrating, we obtain 

R1 = exp(al t  + bl) (4.36) 

Here al and bl are arbitrary constants. 
With the help of (4.36), from (4.32) we get 

R2 = a2 exp( alt 2 b~) (4.37) 

where a2 is another arbitrary constant. 
Equation (4.35) is satisfied only when 

al 2 = -/32 (4.38) 

For a~ to be real,/3 must be imaginary. 
In this model the expansion scalar vanishes and the shear scalar 

becomes a constant. The particle horizon exists. 

Case II. Matter-Filled Universe 

In this case the solutions are the same as in case II of Section 4.1. 

APPENDIX. A BRIEF NOTE ON LYRA'S GEOMETRY 

Lyra (1951) proposed a new modification of Riemannian geometry 
which removes the nonintegrability condition of the length of the vector 
under parallel transport. 

Lyra defined the displacement vector PP' between two neighboring 
points P(x  ~) and P'(x~" + dx ~') by its components x ~ dx ~, where x ~  x~ ~') 
is a gauge function. The coordinate system x"  and the gauge function x ~ 
together form a reference system (x ~ x~'). The transformation to a new 
reference system 07~ ~") is given by 

with 

go = ~O(xO ' x"),  ~" = )7"(x ") (A.1) 

10x_cl Ox~ # 0 and Jacobian ]Ox ~[ # 0 
Ox ~ 

The connections F ~  are given by 

r .~=(x~ - '  + ( a . ~ + a ~ . - g . ~ )  (A.2) 

where the {.L} are defined in terms of the metric tensor g.~ as in Riemannian 
geometry and ~b. is a displacement vector field. 
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It is shown by Lyra (1951) and Sen (1957) that in any general reference 
system the vector field quantities r appear as a natural consequence of the 
introduction of the gauge function x ~ into the structureless manifold. 

The metric in Lyra's geometry is given by 

ds 2 = g ~ x  ~ dx~x  ~ dx ~ (A.3) 

and is invariant under both coordinate and gauge transformations. 
The infinitesimal parallel transfer of a vector is given by 

_ _ f - ~  ; ~ x o  d~ ' ~ -  _~ , . ,  ._ dx  '~ (A.4) 

where 
" o ~  ~ ct 1 a 

The F ~  are not symmetric, but the F ~  are symmetric in /.~ and v. The 
length of a vector does not change under parallel transport, unlike in Weyl's 
geometry. The curvature tensor * R ~  is defined by 

*R~x'~ - (x~ 2 (x~ - 0 - 7  

o~,~ o'~ ~ o ~  ~of-;3 ] + x  F ~ x  F ~ - ~  ~ ~ (A.5) 

The curvature scalar, obtained by contraction of equation (A.5), is 

*R = (x~ + 3(x~ + 3 6 " 6 .  

+2(xO)_ ~ O [log(xO)2] r  (A.6) 
0x ' -  

The volume integral is given by 

I = f L( -g ) ' / 2 (x~  4 d4x (A.7) 

where d4x is the volume element and L is a scalar invariant. 
If we use a normal gauge, i.e., x ~ 1 (Sen, 1957) and following Halford 

(1970) we let L =  *R, then equations (A.6) and (A.7) become, respectively, 

*R = R + 3 6 " ; .  +~6"r (A.8) 

I = f * R ( - g )  ~/2 d4x (A.9) 

The field equations are obtained from the variational principle 

8 ( I + J )  =0  (A.10) 
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where I is as given by equation (A.9) and J is related to the Lagrangian 
density ~f of matter by 

J = I ~ ( - g )  d4x (A.11) 

The field equations are thus (using X = 87rG/c2) 
1 3 3 o ~  R.~ - ~Rg~ + ~r --4g~,~qb~Cb - - x T  (A. 12) 

where T,.. is the energy-momentum tensor. For further details we refer to 
Bhamra (1974), Halford (1970), Sen (1957, 1960), and Sen and Dunn (1971). 
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